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STABILITY OF CYLINDRICAL AND CONICAL SHELLS OF CIRCULAR
CROSS SECTION, WITH SIMULTANEOUS ACTION OF AXTAL
COMPRESSION AND EXTERNAL NORMAL PRESSURE®

By Kh. M. Mushterli and A. V. Sachenkov

We conslder in this report the determination of the upper limit of
critical loeds in the case of simultaneous actlion of a compressive force,
uniformty distributed over plane cross sections, and of lsotropic externsl
normel pressure on cylindrical or coniecal ghells of circular cross sec-
tion. As a starting point we use the differential equations for neutral
equilibrium of conical shells (ref. 1) which have been used for the solu-
tion of the problem of stabllity of conical shells under torsion and under
axial compression (ref. 2); upon solution of the problem it is possible
to satisfy all boundary conditions, in contrast to the report (ref. 3)
where no attention is paid to the fulfiliment of the boundary conditions
and to the report (ref. 4) where only part of the boundery conditions are
satisfied by solution of the problem according to Galerkints method.
Approximate formulas are used for the determlnation of the critleal
external normal pressure with simultaneous sction of longitudinal com-
pression. Let us note that the formulas suggested in reference 5 are
not well founded snd msy lead, in a number of cases, to a substantial
mistake in the megnitude of the critical load.

1. SYMBOLS

We shall use the following symbols:
2y angle of taper

r distance, along the generatrix, between the vertex of the
cone and a point on the median surface

o distance to the smaller one of the bases

*"Ob ustofchivosti ts8ilindricheskikh 1 konicheskikh obolochek
krugovogo cecheniia pri sovmestnom defstvii osevogo szhatlle i vmeshnego
normalnogo davleniia." Prikladnais Matematika 1 Mekhanika, vol. 18,
no. 6, November-December 1954, pp. 667-67Tk.
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length of the shell along the generatrix

thickness of the shell

angle between the axial plane and the plane under -
consideration — we e e

number of waves forming along the periphery when the éhell'
buckles

normel displacement of the point on the median surface -
during buckling :

external normel pressure, acting both on the lateral surface
and on the bases of the shell section considered

additional compressive forece applied to the smaller of the
end cross sections £

linear membrsne forces up to buckling, determined accordihg
to the momentless theory ¢

additional membrane forces appearing during buckling
edditional annuler expansion
modulus of elastlcity

lateral-expansion coefficient

- I
2Fh 2HnJ -
= D= (rigidities of the shell)
1-02 3(1 - @)
L (1.1)
1+ 7o t=1nT my = & (m - integer) ]
_ 1 -0 _ 2 )
Ry = rg tan 7 V= ﬁ——ar-l ) My =1-2v
: (1.2)
2 b - “n
=V - = i =
ko 3v ¢y = ¢ 8in 7 1= 3iny ) N
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2o w21 - 2v-2) o o (1 +20)mn(rB - 1)
3r02cot2 7(1 - 02)(1 - V) (18 - 1) [Vro tend 7(1.(l+2v) - 1)}
(1.3) L
To(2 + 2v)(l - (2v-1)) N Alm2 +0.25(1 + 2v)%]
poRo(L = 2v) (-r(1+2v) 1) m 2 J
1]2 _ 62(17112 + va)mlh' )
[mlz + (1 - v) 2] [ml)+ + ulm12 + ”2]
. i[mla + 0.25(1 + EV)ﬂ(mll“ +u;r312 + 92) § (1.4)
[mlh (m12 + va)] :
i1
8, =\3 = J

2. FUIFILIMENT OF THE BOUNDARY CONDITIONS AND INTEGRATION

OF THE EQUATION OF COMBINED DEFORMATION

The differential equations after introduction of the stress function
will be (ref. 1)

e 2% 13w, 1 %
DrAAW - cot 7 &% - P |Tya &2 4 Ton[z = + 5 =] =0
7 N 10 20<r 72 30 )
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where : - -

r2 or r2 a¢12
T =_1.§i+L§?f_ T =ﬁ §=._.9flof (2.2)
LT ror T 12 39,2 27 %2 ar(r 3

Tlo = - 5 - T20 = —por tan 7 (2.3)

3r2 Tor l‘aq)l2
T, =0 € = 0

must be satisfled on the edges r = rq and r =rg + L.

We introduce the following substitutlions:

z=lnr—I;)- f =F cos 09y w=evzwl COS NnqQq -t=ln(1+r£o.)
(2.5) i

Then, taking equations (2.3) into consideration, we bring equations (2.1)
into the form

gu’—lzl--le-‘ﬁF-+(h-anaiiiF-+an2g-+ nh-i-maF+
dzl" dz 1 )dz2 1l 4z (l l)

2Ehrq cot 7e(l+v)z[f‘§‘ + (2v - l)%’l + (v2 - v)wl} =0

dz
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(V—ll-)z l ll-( - v) —-l + Kln 2“' + K2n d. +K3nwl -

2
rn cot tan
To ot 7 e(l-v)z(ﬁ ) gz) Bk AR S P O

D 2 az D 02 1,2 3)az - K1l *
+(2v—1)-5;—+(v - )wl =0 (2.6)
where
\
Kip = 6v2 = 12v + b - 2n;2
Kpp = W2 - 1202 + 8v + lmla(l - V)
$ (2.7)
K3n = v)'L S TRV S R nle(’-t - L4y + 2~v2) + nlu'
_ 2 1 1.2
Kyn = nq > v > v ]
The boundary conditions (2.4) assume the form
a5
wy =0 = = 0 (2.8)
dz
aF ?_F d.2F - For z=0 end z=1t%
a-z-:—nl =0 d—z-z—--a—z-=0 (2.9)

We shall seek the solution of the boundary-value problem, assuming the
shape of the wave formation

vy = Ay sin myz (2.10)

Thereby, the boundary conditions (2.8) will be satisfled.
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From the first equation of the system (2.6) we find

o -
Ble(nl+ )Z--+ B e(2 nl)z +

_ nyz -njz
F = Ae + Aye + >

(1+v)z (

2ApEhr, cot ye O 8in mz + Xp, cos mlz) (2.11)

= [(mlE + v - va)chn - 4(v - 2v2)m12¢mn] , (qunE . 16m12V211rm2)

= my [(1 - 2v)q1mn + by (m12 +v- va)vmn] : (q>mn2 + l6m3_2v2*mn2)

1

(m12 + n_-]_e)2 - 2(1 + va)nl2 + 2(1 - 5v2)m12 + (v2 - 1)2

L]

- (2.12)

Satisfying the conditions (2.9), we arrive at the system of equa-

tions for determining 4;, A5, B;, end Bs.

used

As has been shown in reference 1, the initial equations assumed were

only in the case of a thin shell of small length, the buckling of

which occurs wlth the formation of a conslderable number of waves along
the circumference.

For the approximste determination of the hyperbollc terms in the

expression (2.11) we cen take

especlally since, as will be shown later, those terms affect the magnitude

sinh nlt = cosh nlt

of the critical load only insignifieantly. In this menner, we find

PSR, 5.1 SR CRIO. Sl L
2212 - ny) stnh mt m® +my (2.13)
B, ~ o) o(v-1)t By ~ 5

2(nl + l) sinh myt n; -1
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where _
2

S ) B

Oy = (1 + V)0 + md

& = (1+ V) O - myXp o

3

0.5(2@2 - nlzxmn - <‘b,_l_)

= (l + V) Ql - ml¢2 > (2;1’4‘)

(1 + V)X, +me

L)
\¢ ]
I

%. THE CHARACTERISTIC EQUATION

_Substituting equations (2.10) and (2.11) into the second equation of
system (2.6), we integrate that equation according to the method of

Bubnov-Galerkin, multiplying it by e(2+v) zg1y mz dz.

In this manner, we arrive at the characteristic equation
P-Q-R+T=0 (3.1)

where
mlea[mllL + 4(v - 1)2m12 - mlaKl'n + (1 - v)Ky, + K3n]

m12 + (l - V2)

P

Pomy[0.5m% - L5v(L +v) - 0.25 + 0% Am® + 3v(1 - v) - 0.5]_1

D m2 + 0.25(1 + 2v)2 m?2 + 0.25(1 - 2v)2 J

Ly ) (‘1’6 + nl¢5)e2Vt . (°6 - nl¢5)

=(,|.2v_]_) ::1]_2+(n:|_+v-l)2 m12+(nl+v-l)2+

25627 (ny + 2) . 05(ny - 2)
m12+(nl+l+v)2 m12+(nl- 1- v)2

.- my (0 - 05) + v(e, ~ 9)

mla + Va

(3.2)
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This equation may be greatly simplified for the wlde range of thin
shells which satisfy the condition

t=mé+—)§1 L £ 1.72rg

Then we have according to equations (1.2), m12 Z 72, In addition,
for thin shells of small length n12 is much greater than 1. Thereby

we have, retaining only the main terms in the expressions of the gquanti-
ties (2.12), (2.14), and (3.2)

Ly Eﬂ¥ﬁ+ - 20nl3 - m12n12 +2(1 - c)nhﬁ]
mlaﬁnle +(ng + v+ l)é][ﬁla *_(nl +V - 1)2]

Caleulations according to this formula, which take™into account the
expression P and the solutlon obtained further on, show that the quan-
tity R in equation (3.1) may be neglected if we permlt an error in the
magnitude of the critical load of 2 to 3 percent in the direction of
increased load. In the remaining terms of the equation we can also
neglect the quantltles of the order one in comparison with nlz. This
glves en additionel error of 1 to 2 percent.

[

Hix

Let us note that the maximum error is admitted on the boundery of
the reglon where the shell becomes rather long and, for stablllity,
requlres transverse reinforcements. With the reduction of t the per-
missible error rapidly drops to 1 to 2 percent. Thus, we shall determine
the criltical load from the approximate equation

Do n12 + O.5m12 7\!1‘112
DT 5 ¥ 2
m2 + 0.25(1 + 2v) m2 + 0.25(1 - 2v)<

e2(m? + n?)2 m* + wim?® + o

+
m12 + (1 - v)2 (m.l2 + nlz)a(m,l2 + vz)

(3.3)

In the special case of longltudlnal compfession miz is much grester

then 1 and taking the designations (1.3) and (1.4) for PO 0 into
consideration, we find .

To(l + 2v) (1 - +(2v-1)) _ ¢2(m2 + n12)2 2

Di(1 - 2v)(+(142V) _ 1) my 2 (mlz_f n)2)2
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Consequently, the criticel compressive force is equal to

_ (1 -~ 2v) ‘jKD(l - 0»2) (T2V - l) (l _ T(2v-2))

Jv(l - V) Ro(l - T(av_l))

The deviation of Ty given by the above formula from the corre-
sponding exact formuls obtained by Shtaermen does not exceed L4 to 5 per-
cent for t = 1.

To (3.4)

k., DETERMINATION OF THE CRITICAL LOAD

- Using the notation (1.4) and, in addition

2 2
o} +n
o) =l_._.i.. (L(.,]_)

my
we bring equation (3.3) into the form

K' 2.2 1
= 5 + = k.2
Fo N -1+ S/m]_@ 52) ( )

From the condition apojaa =0 we find

n2st =[3 +ﬂ7_‘l_'_}2ﬂ] : [1 + 2(7\1 - )%] (k.3)

5

By means of simple, but rather tedlous calculations we can show
that Bpo/ dm; 1s greater then O.

Such a monotonic increase of the quantity Po with increasing m;
can be explained by the fact that the quantities KXK', Ap, and 1]2 are
chenged very little by the increase of my, owing to the fact that, as
can be seen from equation (L.2), for every fixed & +the minimum Po is

reached at the largest of the values B/ml , permitted by the boundary
- corditions. Therefore

m=1 my = n/t (b.L)
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From N =1 in equation (4.3) we find

=5 h (1.5)

If mle >> 1, this solution holds in the case where the prebuckling

stress is equal to the ring stress.

In the general case

§ = 2 | (4.6)

where B satisfles the equation

2(1-n)m __[1-ept

A (4.7)
81 (l+B)[l-%(l+B)]
Hence it follows that l
-0.2 £ B 50.2, if 0.86 2 2(1 - 7\1)% 2 -2.93 (%.8)

Thus we may assume for B the smaller (with regard to the modulus)
root of the equation

ﬁ2[9 - 41 - 7\1)%] + ;3[6 - 2(1 - Al)rg—ﬂ +2(1 - 7\1)1;—1 =0 (%.9)

and the spproximste value of the critical pressure is equal to

Po,k = 1'33-‘{"13/2‘“1(1'35 + 26%) : [l ’ 2—1(7‘1 - 1)+ B)] (%.10)

In the neighborhood of its minimum, the value bp, changes slowly;

therefore, the critical value of the pressure determined for B (which
was found from (4.9)) differs even on the boundaries of the region (4.8)
from its value for B which satisfies the condition of minimizing (4.7)
by less than 0.6 percent, although the error in the magnitude of B
attalns 13 percent. -
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For shells which satisfy the condition

0.k 2 2(1 - 7\1)% > -0.83 (4.11)

that is, for -0.1 £ p £ 0.1, admitting a conservative error of about
1 percent, we may put P = O in equation (4.10). In thls manner, we
arrive at the simple formule

= (k.12)
1+ (ml/al) (7\1 - 1)

PO,k

Here and in equation (4.10), the quentities XK', my, 17, B&;, and
N sare determined according to formulas (4.4), (L.5), and (1.1) to (1.k4).

For A =0, AN = 0.5 we obtain therefore the following formula
for the case of isotropic pressure

_ l.7’+K‘mlT]3/2
1 - 0.5m /8

Po,k (%.13)

In the specilal case of a cylindrical shell with the radius R we
have

L sin R SFh
R 1 Lsiny R sinZy
T 2
M = 0.5+ A =9 - _h siny

!
PoR R\ﬁ(l - @)

According to formuls (4.12) we find the magnitude of the critical
isotropic pressure in the case of simultaneous action of the axial com-
pressive force Tg:

_ __4.85mn /1_1)3/2 oy, _x8fr (To
1(1 - 2)3/*\R (1 - ¢2)1/M\peR

5) (.14)
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whereby the condition

3

0.265 2 (1 - 2NE 2 —0.45 (4.15)

must be fulfilled.

Let us note that equation (4.14) is equivalent to the equation

. P -
gt =1 - (4.16)
TO,m PO,m S _
where
T, = _2.68E° Pr. = —mtt:B83ER (E>3/2 1 0.91{rR
T Rfa- P L1 - @) 3R (1 - 02) L/
(4.17)

This laest equation is approximately satisfied only under condi-
tion (4.15). Moreover, 1t 1s necessary to take into conslderation the
case where the shell may lose its stability "with a bang' due to axisl
compression. Therefore, our formulas ought to be used only when the

total axial force Tg + %pOR is smeller than the lower limit of the

critical axial force Tqy which, as is known (ref. 6), is determined
according to the formula

Tyy & Q- TEEN" (4.18)

Let, furthermore, Ty + ZDoR be less than or equal to 0.78En?/R
Then, according to equation (4.16)

. 2 P, B
PO = POm(% - Q_Iggéi) : (? - _QE.) (4.19)

Consequently,

Lo By,  LFEECQ - Ror/2oy)
PoR PomR=(1 - o.78m2/RT0m)
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or, taking equations (4.17) into consideration, assuming o = 0.3 and

neglecting in the second-order terms hR/L2 in comparison with unity,
we have

(1 - 27\)‘@E > 2‘71?‘5_3 - 0.42 > -0.45

that is, condition (k.15) is fulfilled.

Formula (4.12) which determines the critical normel pressure in
the case of simultaneous actlon of axial compression, can be greatly
simplified under the condition m; 2 = For 0.25 5 o £ 0.33 (as is

usuelly the case with metals), teking into account new notation,
formule (4.12) after easy celculations and neglect of second-order
terma, can be put in the form

(2 - (00 - )My . =) 5 ten ()2

= 4.85 - —
POk T+ -9 1)+ 1 +8(x - 0.5)]
(L.20)
where
T=1+ L A= 2 - G)To(l - T-G)
ST agReerE) - 1)
/4 (k.21)

e - 1.82 El - T—(L+Uﬂ JEL ten ¥

1+o Er(l—cr) - 1] Ry 1n T

Let us note that in the change from formule (4.12) to the simplified
formula (L4.20) we reduced the critical pressure at most by 5 percent
(for t = 1); but formula (4.12), in turn, was derived from the character-
istic equation (3.1), by way of simplificetions, which increased the
pressure we had been seeking by 2 to 3 percent. In this manner, formulas
(4.20) ultimstely gives the upper limit of the critical pressure, reduced
by less then 3 percent.

Moreover, we must not forget that formula (4.12) and notebly, also,
formuls (u.zoi are derived for the range of variasble shell parameters
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determined by the inequalities (4.11) which, after simplification,

asgume the form:
0.49 2 (1 - 2A)8 2 -0.83

Translated by Mary L. Mahler
National Advisory Committee
for Aeronsasutics

(4.22)
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